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Beowulf System (Hyglac)

¢ 16 PentiumPro PCs, each with 2.5 Gbyte disk,
128 Mbyte memory, Fast Ethernet card.

¢ Connected using 100Base-T network, through a
16-way crossbar SWit¢a—y——

¢ Theoretical peak 1B
performance: 3.2 T TR TR
GFlop/s.

+ Achieved sustained
performance: 1.26
GFlop/s.
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Hyglac Cost

¢ Hardware cost: $54,200 (9/18/96)
— 16 (CPU, disk, memory)
— 1 (16-way crossbar, monitor, keyboard, mouse)

¢ Software cost: $0 (+ maintenance)
— Public Domain OS, compilers, tools, libraries.

¢ 256 PE T3D: $8 million (1/94)
— Including all software and maintenance for 3 years.

¢ 16 PE T3E: $1 million
— 3 to 4 times more powerful then T3D.
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Hyglac Performance (vs. T3D)

Hyglac T3D T3D
(MPI) (MPI) | (shmem)
CPU Speed (MHz) 200 150 150
Peak Rate (MFlop/s) 200 150 150
L1, L2 Cache Size | 8i+8d, 256| 8i+8d,(0 8i+8d, Q
(Kbytes)
Memory Bandwidth 0.78 1.4 1.4
(Gbit/s)
Communication 150 35 1.8
Latency (1s)
Communication 66 225 280-970
Bandwidth (Mbit/s)

+ Next, examine performance of EMCC FDTD and
PHOEBUS (FE) codes...
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FDTD Interior Communication

Standard Domain

Decomposition Required Ghost Cells

Interior Cells
Ghost Cells

One plane of ghost cells must be communicated to each
neighboring processor each time step.
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FDTD Boundary Communication

Standard Domain Boundary
Decomposition Decomposition

-

Extra work required along faces
(boundary conditions, wave |
source, far-field data locus).

Different decompositio
required for good load
balance.

N

Data at 4 faces must be redistributed twice each time step!!
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FDTD Timing

73D | T3D Hyglac Hyglac
(shmem) (MPI) (MPI, (MPI,
Good Load| Poor Load
Balance) | Balance)
Interior 1.8 1.8 1.1 1.1
Computation | (1.3) | (1.3)
Interior 0.007 | 0.08 3.8 3.8
Communication
Boundary 0.19 0.19 0.14 0.42
Computation
Boundary 0.04 1.5 50.1 0.0
Communication
Total 2.0 3.5 55.1 5.5
(1.5) | (3.0)

“using assembler kernel)

All timing data is in CPU seconds/simulated time step,
for a global grid size of 282 362x 102, distributed

on 16 processors.
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FDTD Timing, cont.

¢ Computation:
— Hyglac CPU is 35-65% faster than T3D CPU.

¢ Communication:

— T3D: MPI is 4 to 9 times slower than shmem.
— Hyglac MPI is 30-50 times slower than T3D MPI.

¢ Good (or even acceptable) performance may
require rewriting/modifying code.
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PHOEBUS Coupled Formulation

For three unknowns,
H, J M

The following three equations must be solved:

1 _
_ngoégDXT)El—(DxH) kOTEurHDdV JTMds=0

(finite element equation)

[AixU Eﬂﬁ xH - 3] dS=0 (essential boundary condition)

AY

Z[M]+2,[3] =V, (combined field integral equation)
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PHOEBUS Coupled Equations

oK C O04Ho 00O
0 h o 0O O
c' 0 Zz,UMOD=00C
0 b o O O
HO ZM ZJ%‘]E incH

+ This matrix problem is filled and solved by
PHOEBUS.
— The K submatrix is a sparse finite element matrix.
— The Z submatrices are integral equation matrices.

— The C submatrices are coupling matrices between the
FE and IE matrices.
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PHOEBUS Two Step Method

K ¢ ogHp g ¢ Find-C'K™C using QMR
S i h row o€, buildi
C x rows ofK™*C, and
H=-K1cM L L
multiplying with C'.
Lc'k™c z HMo oo
5 2=y #Solve reduced system as a

dense matrix.

¢ If required, sav&K™'C to
solve forH.
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PHOEBUS Decomposition

+ Matrix Decomposition
— Assemble complete matrix.

— Reorder to equalize row bandwidth.

» Gibbs-Poole-Stockmeyer
» SPARSPAK’s GENRCM

— Partition matrix in slabs or blocks.

— Each processor receives slab of matrix
elements.

— Solve matrix equation.
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__PHOEBUS Matrix Reordering

Original System System after Reordering
for Minimum Bandwidth

Using SPARSPAK’s GENRCM Reordering Routine
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PHOEBUS Matrix-Vector Multiply

Communication from
processor to left

m \i I ~<a— Local processor’'s rows
\ Columns :

ih \\Local Processor’'s rows
Local processor’'s rows

Communication from
processor to right
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PHOEBUS Solver Timing

Model: dielectric cylinder with 43,791 edges, radius = 1 cm,
height = 10 cm, permittivity = 4.0, at 5.0 GHz

T3D | T3D Hyglac
(shmem) (MPI) (MPI)

Matrix-Vector

Multiply 1290 | 1290 590
Computation
Matrix-Vector

Multiply 114 272 3260

Communication
Other Work 407 415 1360
Total 1800 1980 5220

Time of Convergence (CPU seconds), solving using
pseudo-block QMR algorithm for 116 right hand sides.
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PHOEBUS Solver Timing, cont.

+ Computation:

— Hyglac CPU works 55% faster than T3D CPU.

— For sparse arithmetic, large secondary cache
orovides substantial performance gain.

¢ Communication:

APL

— T3D MPI is 2.5 times slower than T3D shmem.
— Hyglac MPI is 10 times slower than T3D MPI.

— The code was rewritten to use manual packing
and unpacking, to combine 10 small messages
Into 1 medium-large message.
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PHOEBUS Solver Timing, cont.

¢ Other work:

— Mostly BLAS1-type operations (dot, norm,
scale, vector sum, copy)

» Heavily dependent on memory bandwidth.

— Also, some global sums
» Over all PEs.
» Length: number of RHS/block complex words.

— 3.5 times slower than T3D.
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Conclusions

¢ If message sizes are not too small, adequate
communication performance Is possible.

+ Computation rates are good, provided there
IS adequate data reuse.

¢ Low-cost parallel computers can provide
better performance/$ than traditional parallel
supercomputers, for limited problem sizes,
and with some code rewriting.
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Conclusions, cont.

¢ Both EMCC FDTD code and PHOEBUS
QMR solver should scale to larger numbers
of processors easily and well, since most
communication is to neighbors.

¢ User experience has been mostly good:

— Lack of both support and documentation can be
frustrating.

— Easy to use, once you know how use |It.

JPL Daniel S. Katz (July 14, 1997) 19



